Solutions to Problem 1.

a The diagonal entries of \mathbf{P} are the probabilities that a consumer purchases a brand, given that they previously purchased the same brand. The diagonal entries being higher than the off-diagonal entries indicates that a consumer is more likely to stick with a brand if they previously purchased that brand.
b The initial state vector is

$$
\mathbf{q}^{\top}=\left[\begin{array}{lll}
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

We want $q_{3}^{(50)}$.

$$
\mathbf{q}^{(50) \top}=\mathbf{q}^{\top} \mathbf{P}^{50} \approx\left[\begin{array}{lll}
0.455 & 0.455 & 0.091
\end{array}\right]
$$

So, $q_{3}^{(50)} \approx 0.091$.
c Let $\mathcal{A}=\{1,2\}, \mathcal{B}=\{3\}$. We want $f_{23}^{(10)}$.

$$
\mathbf{F}_{\mathcal{A B}}^{(10)}=\mathbf{P}_{\mathcal{A} \mathcal{A}}^{9} \mathbf{P}_{\mathcal{A B}}=\left[\begin{array}{ll}
0.70 & 0.28 \\
0.28 & 0.70
\end{array}\right]^{9}\left[\begin{array}{l}
0.02 \\
0.02
\end{array}\right] \approx\left[\begin{array}{l}
0.017 \\
0.017
\end{array}\right]
$$

Therefore, $f_{23}^{(10)} \approx 0.017$.

Solutions to Problem 2.

a.

b. We want $\operatorname{Pr}\left\{S_{3}=1 \mid S_{0}=1\right\}=p_{11}^{(3)}$.

$$
\mathbf{P}^{(3)}=\mathbf{P}^{3}=\left[\begin{array}{lll}
0.225 & 0.496 & 0.279 \\
0.225 & 0.495 & 0.280 \\
0.224 & 0.492 & 0.284
\end{array}\right]
$$

So, $p_{11}^{(3)}=0.225$.
c. Since the AGV is equally likely to be at any of the three locations, the initial state vector is

$$
\mathbf{q}^{\top}=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

We want $\operatorname{Pr}\left\{S_{3}=3\right\}=q_{3}^{(3)}$.

$$
\mathbf{q}^{(3) \top}=\mathbf{q}^{\top} \mathbf{P}^{3} \approx\left[\begin{array}{lll}
0.2247 & 0.4943 & 0.2810
\end{array}\right]
$$

So, $q_{3}^{(3)} \approx 0.2810$.
d. Let $\mathcal{A}=\{1,2\}$ and $\mathcal{B}=\{3\}$. We want $f_{23}^{(5)}$.

$$
\mathbf{F}_{\mathcal{A B}}^{(5)}=\mathbf{P}_{\mathcal{A} \mathcal{A}}^{4} \mathbf{P}_{\mathcal{A B}}=\left[\begin{array}{ll}
1 / 5 & 3 / 5 \\
1 / 4 & 1 / 2
\end{array}\right]^{4}\left[\begin{array}{l}
1 / 5 \\
1 / 4
\end{array}\right] \approx\left[\begin{array}{l}
0.0839 \\
0.0790
\end{array}\right]
$$

So, $f_{23}^{(5)} \approx 0.0790$.

Solutions to Problem 3.

a.

b. The probability that a lawyer leaves as non-partner, given that the lawyer left as a non-partner in the previous year is 1 . This value is p_{44}. Likewise, the probability that a lawyer leaves as a partner, given that the lawyer left as a partner in the previous year is 1 . This value is p_{55}.
c. We want $\operatorname{Pr}\left\{S_{5}=3 \mid S_{0}=1\right\}=p_{13}^{(5)}$.

$$
\mathbf{P}^{(5)}=\mathbf{P}^{5} \approx\left[\begin{array}{ccccc}
0.3597 & 0.2176 & 0.1572 & 0.2546 & 0.0109 \\
0.0725 & 0.1422 & 0.4473 & 0.2711 & 0.0669 \\
0 & 0 & 0.7738 & 0 & 0.2262 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

So, $p_{13}^{(5)} \approx 0.1572$.
d. We want $\operatorname{Pr}\left\{S_{5}=3\right\}=q_{3}^{(5)}$.

$$
\mathbf{q}^{(5) T}=\mathbf{q}^{T} \mathbf{P}^{5} \approx\left[\begin{array}{lllll}
0.2843 & 0.1916 & 0.2460 & 0.2452 & 0.0329
\end{array}\right]
$$

So, $q_{3}^{(5)} \approx 0.2460$.
e. Let $\mathcal{A}=\{1,2\}$ and $\mathcal{B}=\{4\}$. We want $f_{14}^{(6)}$.

$$
\mathbf{F}_{\mathcal{A B}}^{(6)}=\mathbf{P}_{\mathcal{A} \mathcal{A}}^{5} \mathbf{P}_{\mathcal{A B}}=\left[\begin{array}{ll}
0.80 & 0.15 \\
0.05 & 0.65
\end{array}\right]^{5}\left[\begin{array}{c}
0.05 \\
0.10
\end{array}\right] \approx\left[\begin{array}{c}
0.0397 \\
0.0178
\end{array}\right]
$$

So, $f_{14}^{(5)} \approx 0.0397$.

